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Abstract. In a w i d e q m  quantum system the effect of the Hamiltonian is negligible by 
comparison with the effect of the environment For open systems, this is the opposite limit 
to closed or isolated systems. The quantum state diffusion model provides equations for the 
localization or reduction of qnanlum stales of wide-open systems. The ensemble localization of 
an operator is defined, and it is proved that the rate of ?&localization of a selfadjar environment 
operator towards one of its eigenstates is no less than 2. A bound is also obtained for the rate 
of selflocalization of some non-selfadjoint operators, which localize to minimum indeterminacy 
wave packets. The theory is presented for quasiclassical systems. For a sufficient number 
of independent environment operators. the states localize isymptatically to wave packeh with 
Heisenberg indeterminacy products close to the minimum, which look to classical eyes like phase 
space points. To zeroth order in R, the time-dependent WKB theory of quantum stale diffusion 
due to a single operator shows localization or reduction within and berween fixed classical sheets 
or Lagrangian manifolds. To first order, the sheets themselves diffuse. The rate of localization 
in an ensemble is determined by "mufation terms with either sign and by correlation terms 
which always increase the localization. For the quasiclassical case the latter dominate, and this 
leads to a purely classical theory of localization. with a picture based on the diffusion of phase 
spiice densities. This means that state diffusion dynamics, like Hamiltpian dyanamics, has a 
purely classical form, in which Planck's constant plays norole. 

1. Introduction 

The quantum state diffusion model ([l-31, see also [4-151) is a formulation of the quantum 
mechanics of open systems which abandons locality but keeps other aspects of classical 
physics intact, as discussed in the second reference of [25]. This and the related quantum 
jump or stochastic wavefunction methods [13,1&22] have established that: 

(i) Ordinary quantum mechanics is no longer the best for all practical purposes [25], 
transforming the situation lamented by Bell [23] a few years ago. Although the new models 
depend on ordinary quantum mechanics for their formulation, they provide very different 
pictures of what happens to an open quantum system. 

(ii) In these models, the changing state of a single quantum system is represented directly 
by a stochastically evolving pure state vector, as for a single run of a laboratory experiment. 
The state vector is then not merely a device for computing statistical expectations in an 
ensemble of systems.~ Such direct representations have a long history, starting with de 
Broglie pilot wave theory, but the new models have established their practical and intuitive 
value. 

(iii) In the state diffusion model, quantum measurement is nothing special. It is merely 
an example of the interaction of a system with its environment., This interaction of a 
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system with measuring apparatus can be treated in the same way, and using the same basic 
equations, as the interaction with any other environment, such as a beat bath. These other 
environments also produce localization or reduction, in the absence of anything resembling a 
measurement. This is consistent with the ideas of Joos and Zeh [?A, 251, but the model differs 
in having an explicit equation for the localization, modifying the Schrtidinger equation. 

(iv) Localization or reduction appears on distinguishing between quantum expectations 
for an individual quantum system and ensemble means over properties of members of an 
ensemble of quantum systems. These properties are functions of quantum expectations. In 
the theory of localization or reduction, the functions can be linear, quadratic, logarithmic, 
or of any other form. Quadratic functions are particularly important. 

(v) For this purpose, density operators are inadequate. They can represent ensemble 
means over linear functions of the quantum expectations only. 

In the quantum state diffusion model of open quantum systems, an individual system 
is represented by a pure state vector which diffuses in the state space consistently with the 
Bloch or master equation for the density operator of an ensemble 11-31, The state vector 
satisfies the unique equation (2.14). The model provides a more concrete representation 
of the quantum dynamics of individual systems than ordinary quantum mechanics, and 
sometimes leads to more efficient computations, but does not lead to different results. 

Although the state diffusion model provides both insight and practical tools for the 
solution of physical problems, it cannot be regarded as a complete and satisfactory alternative 
fundamental theory of quantum mechanics, as it depends on an arbitrary division or cut 
between system and environment, and in practice on approximations that have to be made 
as a result o f  this division. 

The detailed analysis here is restricted to wide-open systems, that is, to open systems 
which interact with the environment so strongly that the effect of the system Hamiltonian 
H is negligible by comparison with the effect of the environment, so H can be set equal 
to zero. This is not so restrictive as it might seem. 

It can be applied, for example, to the interaction between a system and measuring 
apparatus in all those situations in which a measurement is well represented by von 
Neumann’s projection postulate [261, for it is then assumed that the dynamical variables 
being measured are not changed significantly by the internal dynamics of the system whilst 
the measurement is taking place, as in a well designed experiment. It can be applied more 
generally using interaction representation. 

In condensed matter physics, chemical physics and biophysics, many quantum systems 
interact very strongly with their fluid or solid environments. The theoretical treatment of 
such systems has been impeded by the inadequacy of ordinary quantum theory of  open 
systems based on the density operator, a situation that could be remedied by the practical 
use of state diffusion methods, whose main applications so far have been to quantum optics. 

Localization as defined here is a property of the s i t e  vectors or wave packets of open 
systems in state diffusion theory [2] ,  not to be confused with the use of the term in other 
contexts, such as Anderson localization. As shown here, the states of most wide-open 
systems become strongly localized in phase space, with state vectors represented by wave 
packets with near to the minimum Heisenberg indeterminacy, so their theory is a zeroth- 
order approximation to an important class of problems in which these wave packets closely 
but not exactly follow the Hamiltonian trajectories of classical mechanics. This is a different 
quasiclassical limit of quantum mechanics than the WKB limit, which applies to closed or 
isolated quantum systems. 

The results presented here generalize and extend some of the work on the interaction of 
free particles by Di6si [26] and by Gutarek and Gisin [8], on dissipative systems by Salama 
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and Gisin [lo], on reduction by Gisin [7] and  on^ measurement [1,2]. A, quasiclassical 
theory of some related state diffusion equations appears in 1291. 

Section 2 introduces the basic definitions and state vector diffusion equations. Section 3 
derives the localization of a dynamical variable in terms of commutators and quantum 
correlations, showing that the rate of ensemble selflocalization of a selfadjoint environment 
operator is no less than 2. Section 4 extends the localization theory to conjugate environment 
operators and their asymptotic minimum indeterminacy wave packets. 

The dynamically linear theory of localization by operators with constant commutators 
appears in section 5. A relative simplicity of this theory allows a bound on the 
quantum correlations for the asymptotic states when there are an arbitrary finite number of 
environment operators Lj .  Section 6 introduces the theory of localization by non-selfadjoint 
operators, which can be used to represent dissipative systems, and obtains a bound on their 
rate of selflocalization to wave packets. 

The quasiclassical theory follows in section 7, where the state vector is approximated 
by a phase space distribution D ( x ,  y). The more detailed theory for the WKB representation 
is given in section 8. 

Section 9 puts the theory in context, with particular emphasis on the existence of a purely 
classical theory of localization or reduction. Bounds on quantum mean square deviations are 
given in appendix 1 and equivalent sets of environment operators are treated in appendix 2. 

2. Definitions and state diffusion equations 

The current pure state of the system is I@). G is an operator, which may or may not be 
selfadjoint. Capital letters are used for operators and small letters for complex numbers. 
The quantum expectation of G for the state I$)  is^ 

g = (G) =.($IGl$). (2.1) 

This notation will be used even when G is not selfadjoint, as.in the case of creation and 
annihilation operators. For selfadjoint G, the quantum expectation of the operator is the 
expectation of the dynamical variable. 

The corresponding shifted operator, with zero expectation, is 

G n = G - ( G ) .  (2.2) 

Shifted and unshifted operators give the same value in commutators 

This relation will be used quite frequently. 
A general operator G may be separated into its real and imaginary (strictly selfadjoint 

and skewadjoint) parts GR and iGr. For the usual annihilation operator A of an oscillator, 
these parts are given by 

where X and Y are convenient conjugate dynamical variables, and A ,  At and X .  Y satisfy 
the standard commutation relations. 
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The effect of a set of environment operators is unchanged under unitary transformation 
in the operator space [l], so that it helps to use definitions and equations that respect this 
invariance. One such definition is the skew commutator 

lBt ,  Cl = I([&. CII + [CR, BID (2.5) 

so that the skew commutator of B with itself is non-zero, unless it is selfadjoint to within 
a phase factor: 

[ B f ,  B] = 2i [B~,  BI]. (2.6) 

The quantum correlation of two operators for the state I@) is extensively used in the 
following sections. It is defined as 

(2.7) U ( B ,  c) = ( B L c ~ )  = (B,c) t = ( B ~ c A )  = ( B ~ c )  - (B)* (c )  

from which it follows that 

U(B* c) = CR) + U ( &  CI) + i(BARCA1- CARBAI) 
$(U(B, c) +u(C, B ) )  = 4%. CR) -!- U ( & ,  CI) + $(([BR. CI] + [CR, &I)) 
U(B,  B )  = ~ ( B R ,  BR) + ~ ( B I ,  BI)  + i([BR, BII) 

? ( U @ ,  B )  

The quantum correlation of B with itself is just the quantum mean square (QMs) deviation 
of B: 

(2.8) 
= U ( B R , B R ) + ~ ( B I , B I ) + ~ ( [ B ' , B I )  

Bt) )  = ~ B R .  BR) +o(BI,  BE). I 

U ( B ,  B )  = ( B ~ B )  - (B)*(B) = &B). (2.9) 

Note that the QMS deviation u2(B) of a non-selfadjoint operator B is not the same as that 
of its adjoint B f ,  but that their mean is the sum of the QMS deviations uZ(BR) ,  u2(BI)  of 
the real and imaginary parts. This convention is helpful to the later analysis, but differs 
from an earlier convention of Caves [27]. 

In particular, for annihilation and creation operators 

d ( A )  + $ = u'(A') - 4 = $?i (u*(X) + u'(Y)) (2.10) 

and for selfadjoint B,  u'(B) = (Ab)'. 
The ensemble mean of a property a(@) of the states I@) of an ensemble is denoted 

by M(a). The ensemble localization A of a selfadjoint operator B is defined here as the 
inverse of the ensemble mean of the QMS deviation: 

A = (M&B))-' = ( M ~ ( B ,  B))-' = (M( (B+B)  - (B)*(B)))-' ( B  sadj). (2.11) 

Its importance is that with this definition there are strict bounds on the rate of localization, as 
shown in section 3. For non-selfadjoint operators B it is more convenient to use a definition 
which is symmetric in B and B f ,  which is given by 

A-' = M ( ~ ' ( B R )  + u'(BI)) = M (u2(B) - f ( [ B t , ~ B ] ) ) .  (2.12) 



- 
Localization of wide-open quantum systems 1007 

These definitions are used to obtain bounds on rates of localization in sections 3 and 6. 

representing an ensemble of wide-open systems, 
The state diffusion theory replaces the deterministic evolution of the density operator p 

(2.13) 

by a unique stochastic diffusion of a quantum state, representing an individual system of the 
ensemble in interaction with its environment [2]. Because the systems are wide open, there 
is no Hamiltonian term. The corresponding quantum state diffusion equation is a stochastic 
differential equation for the normalized state vector I I ~ ) ,  whose differerential It6 form is, 
from PI, 

where the l j  are defined by (2.1). 
From the density operator theory, or directly from appendix 2, Lj may be chosen to be 

linearly independent. In the It6 theory, the stochastic fluctuation or noise of the diffusion 
process is all contained in the standard normalized Wiener fluctuation terms dtj, which are 
of order (dt)’/* and which satisfy the relations 

dcj dtk = 0 dt; dt;I = 6jtdt (2.15) 
Mdtj  = 0. (2.16) 

Note that the quadratic relations (2.15) apply to individual states before taking an ensemble 
mean. This is because in the It6 formalism for stochastic differentials, by analogy with the 
theory of ordinary differentials, corrections for finite d t  that become negligible in the limit 
as dt tends to zero are omitted from the equations. Thus any terms of order (dt)3fl are 
negligible, including all products of the form dt de, and fluctuating teims with zero mean 
are negligible if they are of order dt. For example, in equation (2.15), [@j[* = dt says that 
the fluctuation 

Idtjl* -MI dcjIZ = I dtjIZ - dt 

with zero mean is of order dt, and does not imply an exact equality for finite changes. The 
quadratic relations (2.15) are the complex form of the equations (4.3.15a) and (4.3.15~) of 
Gardiner [28], where more details on the It6 formalism may be found. 

Unlike (2.15), the simple linear relation (2.16) is valid only for the ensemble mean. 
Despite the appearance of quadratic differentials in the It6 theory, the additivity rule, by 

which contributions from independent differential drift and diffusion terms may be added 
together to obtain their combined effect, is maintained over a time dt. This is because of the 
statistical independence of the stochastic fluctuations expressed by the &function in equation 
(2.15). So in these differential stochastic diffusion equations, the detailed derivations are 
carried out for single environment operator L. When there are many L,, their effects for 
time dt can be added by using the additivity rule. 

Most of the equations and results refer to an initial ensemble of identical pure states, 
which diffuse in time dt to an ensemble of different states. For this reason means over the 
ensemble for changes in time d t  on the left side of equations often contain an ensemble mean 
M, whereas the right side, which depends only on the initial state, does not. For equations 
representing the more general situation in which the initial ensemble is of differing states, 
it is only necessary to take an ensemble mean of the right side also. 
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3. Lodiation of a dynamical variable 

In this section the general theory of diffusion and localization is introduced through a simple 
example of diffusion and localization of a selfadjoint operator G representing a dynamical 
variable by an environment whose effect is represented by a single selfadjoint operator L. 
In this case u2(G) = (Ag)’. 

Then the change in (G) due to the diffusion of I@) in time dt is 

d(G) = (1lrlGl d@) + (d@IGI@) + ( W G I  d@) 

- - -_ I (CL; L i G  -   LAG LA)^^ + (GLA)  dc + (LAG) d$* (3.1) 2 

- ~ ( [ [ G , L ] , L ~ ) ~ ~ + u ( G , L ) ~ ~ + u ( L , G ) ~ ~ *  

which is a sum of three terms: a drift given by the commutator and two diffusion term 
whose magnitude is proportional to the quantum correlation of G and L for the state I@). 

The mean rate of change of the QMS deviation is therefore 

M(du*(G)/dt) M (d(G2) - 2(G) d(G) - (d(G))’) /dt 

= -i([[G2, LA], LA]) f (G)([[G, LA], LA]) -21(GLa)I2 

= -4(I[G2, LI, 4)  + (G)(IIG, Ll, L1) - 2b(G,  L)I2 

= -&([[Gi, LI, LI) - 2b(G,  L)I2 
= -Re(GA[G, L]L  + [G, L]GAL)  - 21ff(G, L)I2 (3.2) 

which is the sum of a commutation term, which can have either sign, and a non-positive 
term which is proportional to the square of the quantum correlation of G and L. 

If the commutator 

[G, L]  = iy (3.3) 

with real constant y ,  then 

M(du2(G)/dt) = 2Im (yu(G, L))  - 21u(G, L)I’. (3.4) 

If G commutes with L,  then the commutators are zero, 

M(do2(G)/dt) 5 -2l~(G,  L)I2 (3.5) 

and the ensemble mean of the QMS ‘deviation of G decreases, except when the correlation 
is zero. So a selfadjoint environment operator-tends to localize any commuting dynamical 
operator. 

In particular, if G = L, the rate of selfdiffusion of ( L )  is 

d(L) =2Re((LLn)G)  =2U*(L)dt~,  (3.6) 

so the diffusion rate is proportional to the QMs deviation and localized operators diffuse 
more slowly. The mean change in the QMS deviation is 

M(du2(L)/dt) = -21(L2) - (L)’I2 = -2(u2(L))’. (3.7) 
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Essentially this last result has been obtained by Gisin [7]. To go further, it is necessary to 
consider the properties of the evolving ensemble, rather than those of the individual state, 
using the ensemble localization defined in section 2. Take an ensemble mean over both 
sides of (3.7), and use the Schwarz inequality for means to obtain 

d 
-Mo2(L) = -2M(aZ(L))' < -2(MaZ(L))'. (3.8) dt 

So a bound on the change of the ensemble localization of L defined in section 2 as 

A = A(L,  t )  = (MaZ(L))-' (3.9) 

is given by 

d 
-(A-') < -2A-' 
dt 
d h  - > 2. 
dt 

(3.10) 

(3.11) 

That is, the rate of change  of the ensemble localization is greater than 2. The right 
side is dimensionless because in equation (2.14) all environment operators have dimension 
[time]-'/z, and so their QMS deviation has dimension [time]-'. 

If there are many environment operators, all of which commute, then by (3.5), each 
tends to localize the others. so the inequality (3.11) still holds. However, the localization 
rate can be reduced by non-commuting environment operators, as shown in the next section. 

4. Conjugate operators 

This section treats the effect of conjugate selfadjoint operators on drift, diffusion and 
localization. Let XO and YO be the operators, with 

Suppose there are two environment operators 

LI = ff'X0 Lz = ff2Yo (4.2) 

where it can be assumed without losing generality that both ffj are positive. It is then more 
convenient to use the scaled conjugate operators X, Y, such that 

xo = (ffZ/ff ' ) '~~X Y, = (ffl/rUz)'/ZY (4.3) 

and the constant 01 = (01,a2)'/~, so that 

L' .= ffx Lz =ay. (4.4) 

For the drift of (X) and ( Y ) ,  the double commutator in equation (3.1) is zero, so that 

d(X) = 01' (202(X) d h  + 2Re(o(X, Y) d(2) ) 
d(Y) =f fz(2u2(Y)d~z~+2Re(o(Y,  X)d t l ) ) .  

(4.5) 
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In the following, assume for simplicity that (X) = (Y) = 0. For the QMs deviations of 
X and Y, the commutation relations give 

[[XZ, Y], Y] = [[YZ, XI] = -252  (4.6) 

so from (3.2) and the additivity rule, the changes in the QMS deviations are given by 

Mdu’(X)/dt = d(h’ - Z(U’(X))’ - 210(X, Y)l’) 

MdU’(Y)/dt = a’(h’ -2(u’(Y))’ - ZIU(Y, X)I’) 

M- (u2(X) C uz(Y)) = 20r’ (hz - (~’(x))’ - (~‘(y))’ - 21~(X, Y)I’). 
(4.7) 

d 
dt 

From the inequalities (A1.6) and (Al.8) of appendix 1, the QMS deviation and correlation 
terms are together at least as great as 2ffzfiz, so the right side is never positive. The ensemble 
localization continues with asymptotic approach to a minimum indeterminacy Gaussian wave 
packet with equal QMS deviations for X and for Y: 

(4.8) 

In this special representation, the wave packet is symmetric under rotations in the phase 
space, but for general conjugate variables, obtained from X and Y by an arbitrary linear 
canonical phase space transformation, the asymptotic wave packet could be any kind of 
squeezed state. 

As the asymptotic wave packet is approached, the quantum expectations of X and Y 
continue to diffuse in phase space, according to equations (4.5). 

u’(X) = u2(Y)  = (Xz) = (Y’) = h/2. 

5. Dynamically linear localization theory 

A system has m freedoms, and 2m operators X , ,  Y3, which could be positions and momenta, 
or quadratures of amplitudes of an elemomagnetic field, with the standard commutators 

[Xr. &I = i h L  [X,, XJ = [Yr, YSI = 0. (5.1) 

A dynamically linear operator G has the form 

where b,, cr are arbitrary complex constants. The essential property of dynamically linear 
operators G j ,  required for this section, is that any pair of them should satisfy 

[ G j ,  Gk] = constant. (5.3) 

Let an operator G and environment operators Lj be selfadjoint dynamically linear 
operators, representing dynamical variables, so that equation (3.4) can be used, since by the 
additivity rule of section 2, it generalizes to any number of environment operators Lj.  So 
if 

[G, Lj] = iyj 

~j = u ( L j ,  G)’ = u(G, Lj)  
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the mean change in the QMS deviation is 

Mdu*(G)/dt = 2Im~uj*yj  - 2c luj12 
j j 

Note that U depends on the state, but that y does not. 
The vectors U and y are defined as 

U = ( U I . 0 2 , .  . .) y = (n.  M.. . .) (5.7) 

so that with the usual definition of the complex scalar product, 

MdoZ(G)/dt = 2Im(u, y ) ~ -  2(u, U ) .  (5.8) 

Asymptotic states which no longer localize must therefore have the right side of (5.8) zero 
and so satisfy the inequalites 

I d  < IyIbI. lo1 < IYI. 

From the definitions (5.4,5.5), 

(5.9) 

(5.10) 

The left-hand side depends on the state, and the right-hand side is a constant of order h2, 
because the operators are linear in the conjugate variables. The equation has been written ir. 
a form that is independent of the original.representation. It is a general result that applies to 
the asymptotic states of localization of an arbitrary selfadjoint dynamically linear operator 
G .  If the Lj span the phase space of a system of m freedoms, then these inequalities confine 
asymptotic states to regions of approximate volume E"'. 

6. Dissipation, non-selfadjoint operators 

For most interactions with the environment, including all those with dissipation, the 
environment operators Lj are not all selfadjoint. 

Here are some general results on the change with time of the ensemble mean M of the 
quantum mean square deviations given by 

u ~ ( G )  = (G+G) - I ( G ) I ~  (6.1) 

of an arbitrary operator G ,  not necessarily selfadjoint, by environment operators L that also 
need not be selfadjoint. Because of the additivity rule given in section 2, the results for 
an arbitrary number of environment operators follow from the result for one environment 
operator, for which fie It8 equation is 

Id@) = - f ( ~ + ~ + e * e - 2 e * ~ ) [ @ ) d t + ( ~  -e)i@)dt. (6.2) 

Using the shifted LA operator, the equation takes a slightly simpler form: 

Id@.) = - $ ( L L L A + ~ L L  -e*La)l@)dt+LaI@)@. . (6.3) 
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The change in the expectation of G is then given by 

d(G) = --f(L;LaG + GLILa  - 2LLGLa 

+ eGLk  LAG - e*GLa - tLhG)dt + (GLa)df + (LLG) df* 
= - i ( L t [ L , G ] + [ G , L t ] L ) d t + ~ ( G t ,  L)dt+U(L,  G)dt* (6.4) 

where commutators with L and LA are the same. If G is selfadjoint this simplifies to 

d(G) = Re(Zt[G,L])dt+2Re(u(G,L)dh) (G sadj). (6.5) 

Notice that in general the diffusion terms produce a drift in the mean value in addition 

The ensemble mean of the change in the QMS deviation of G is 
to the complex diffusion. The drift is zero if G commutes with L and Lt. 

Mdu2(G) =M(d(GtG) -2Re((G)*d(G)) - d(G)*d(G)) 

so using (6.4) and the fact that GtG is selfadjoint we obtain 

M-=- du2(c) Re(Lt[L, GtG] -g'(Lt[L, GI + [G, Lt]L) 
dt 

- (b(Gt ,  L)12 + b ( L ,  G)I2) 

- (b(Gi, L)Iz + b ( L ,  GI?) 

= - Re(Lt[L, GtlG + LtGt[L, GI - gLt[L, GI - g*Lt[L, Cl) 

= Re(Lt[Gt, LlGa +LtGi[G,  LN - (lu(Gt, L)Iz+ Iu(L, G)IZ). (6.6) 

This result generalizes to an arbitrary number of environment operators Lj. by summing 
over terms with Lj. 

If L commutes with G and Gt, then all the commutators go to zero, and the right 
side of the equation is non-positive, so that the QMS deviation of G is non-increasing and 
normally decreases. It follows directly from additivity that the same applies when there are 

t any number of environment operators Lj, provided G commutes with all Lj, Lj. 
When the commutators 

[G, L] = -2y [Gt ,  L] = -2~0 (6.7) 

are constants as defined, as in the case when both L and G are linear combinations of 
coordinates and conjugate momenta, the diffusion of (G) and the mean change in the QMS 
deviation are particularly simple. They are 

d(G) =- ( - f y$+- f *y )+~(G ' ,  L ) d t + ~ ( L , C ) d t *  (6.8) 
Mdu2(G)/dt= -2Re(you(L,G)+yu(L,Gt)) -(lu(Gt, L)12+Iu(L,G)Iz). (6.9) 

the commutator [Lt, L] is constant. From equation (6.9). if G = L, we have 

y = o  [L?, L] = -2yo (real) U(L,  L) = u'(L) (real) (6.10) 

The next result is on the rate of selflocalization of a non-selfadjoint operator L when 
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and 

d 
-Mu'(L) = -2yo~'(L) - (u'(L))' - lu(L', L)I'. (6.11) 
dt 

For an ensemble take the mean of the right-hand side and use Schwarz's inequality to obtain 

(6.12) 

where the negative term -Iu(Lt, L)Iz has been omitted. This omission makes the inequality 
weaker than inequality (3.11) for selfadjoint operators when L is close to being selfadjoint. 

With the definition (2.12) for the ensemble localization A, 

dA - > 1 -y;A' 
dt dt 
- < y; - A-' 
dA-' 

(6.13) 

where the right-hand side is positive, by the inequality (A1.12) of appendix 1. 
The commutator yo is of order R, so until the indeterminacy product becomes close to 

the minimum, the localization increases at a rate that is greater than 1. As the minimum is 
approached, an exact inequality is needed. Integration gives 

where 

(6.14) 

(6.15) 

where A = A0 when f =to and where 1 - IyolA > 0 by inequality (Al.12) of appendix 1. 
The states of the ensemble exponentially approach the special minimum indeterminacy wave 
packet of (Al.ll) with equal QMS deviation for GR and GI as t + W. 

For the annihilation and creation operators. I yo 1 = 1 gives a lower bound on the rate of 
selflocalization, together with the asymptotic coherent state wave packet, which is the same 
for each. 

7. Quasiclassical theory: phase space localization 

From the general and linear theories of the earlier sections, it follows that when the effect of 
the Hamiltonian is negligible by comparison with the effect of the environment operators, 
the rate of localization in an ensemble is determined by commutation terms, of order f i  or 
smaller with either sign, and by correlation terms which always increase the localization. 
For the quasiclassical case the latter dominate, and for wide-open systems with negligible 
Hamiltonians and a sufficient number of arbitrary environment operators, the states localize 
to wave packets with Heisenberg indeterminacy products close to the minimum, which look 
like points in phase space on a classical scale. 

Let G and Lj be selfadjoint operators for a wide-open system of m freedoms, in  which^ 
the corresponding dynamical variables g and t j  are smooth over 'classical' regions of phase 
space of dimension much larger than f i m .  Then the localization of a state procedes in three 
stages. 
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In the lowest order quasiclassical theory, the state vector is represented by a density 
distribution D ( x ,  y) in phase space, where 

x = (XI, . . . X")  y = cvl 7 . . . ym) (7.1) 

are a complete set of coordinates and conjugate momenta and the distribution may or may 
not be singular. The density D ( x ,  y) for an individual state must be distinguished from the 
density obtained by averaging over the ensemble. Each pure state density corresponds to 
the quantum state of a single system of the ensemble and diffuses in the space of densities 
according to a diffusion equation obtained from the diffusion equation for state vectors. 

The three stages of localization correspond to three levels of dispersion or localization of 
the density D ( x ,  y). In the first stage the density is so much dispersed that it is not confined 
to a region in which the dynamical variables can be approximated by dynamically linear 
variables, that is, by linear combinations of the canonical coordinates and momenta. In the 
second stage it is so confined, but the region is large compared to h" so the dynamically 
linear theory applies in its classical version. In the third stage, the localization has effectively 
confined the system to a region of phase space comparable to Em,  and the quantum version 
of the dynamically linear thi ory is required. 

In the quasiclassical theory the quantum expectation of an operator G is approximated by 
the classical expectation over the density D ( x ,  y) of the corresponding classical dyanamical 
variable g, 

{G) = (@PI@) X /d"xdmy%-,  YMx, Y )  = (d (7.2) 

where the last equality.is a convenient notation for the classical expectation of a dynamical 
variable. Lower-case letters like g are used for dynamical variables and (g) is used for 
the classical expectation. This expectation of a dynamical variable over a density has to 
be distinguished from the mean M over the ensemble, just as the quantum expectation for 
a state has to be distinguished from the ensemble mean. In the quasiclassical theory a 
quantum product is approximated by the product of the corresponding classical dynamical 
variables and a commutator is aapproximated using the Poisson bracket: 

AB X ab = a(x, y)b(x, y) [ A ,  B ]  x m(a, b]. (7.3) 

Using these approximations, the equations (3.1) for the diffusion of (g) and (3.2) for the 
mean rate of change of u2(g) become 

d(g) = -ifi2({(g, t], !))at + Re(o(g, 1) de) (quasiclassical) (7.4) 

Mdu*(g)/dt = -$ f i2 ( { {g i ,  t), e ) )  - 21u(g, t)I2 (quasiclassical) (7.5) 

and 

where u(g, e)  = (gat). 
Now suppose the phase space distribution D(x ,  y) extends over a region large compared 

to f i m .  The commutation terms are then usually negligible compared with the correlation 
terms. The localization therefore proceeds until the distribution has an area. comparable to A 
for each pair of conjugate canonical variables in which the reduction operates, and proceeds 
indefinitely if the reduction takes place for a variable and not for its conjugate momentum. 
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Thus if the number of linearly independent environment operators is sufficient, and it is 
sufficient for almost all systems of classical size, the state vector localizes in phase space 
to a region of quantum dimensions, which looks like a point to classical eyes. 

The precise form of the wave packet or coherent state to which the system localizes 
depends on the details of the environment operators, but a good approximation is obtained 
by expanding all the operators in a power series about the mean location in phase space, 
and stopping at the linear term. 

The distribution is then given by the dynamically linear theory of section 5. 

8. Quasiclassical and classical theory for WKB wavefunctions 

This section relates the quasiclassical state diffusion theory to the elementary conventional 
quasiclassical theory, so as to give a geometrical phase space picture of the localization. 

In the simplest WKB form of the quasiclassical theory of pure states of a closed or 
isolated quantum system of one freedom, a state vector is represented by a wavefunction in 
x representation of the form 

, 

(8.1) 111 iS(x)/fi = e 

where D ( x )  is a classical density and S(x) is a classical’action. The phase space density is 
then confined to the region of a curve or wave front 

( x ,  Y) = (x, a s w a x )  . ~ (8.2) 

in the phase space, where y is ,conjugate to~x.  The phase space curve can be  represented 
by a delta-distribution for D ( x , y ) .  but it is more convenient and common to use the 
representation in te& of the phase curve defined by S ( X )  or y(x), with D ( x )  to represent 
the density on the curve. 

More generally, for a system of m freedoms, the density is confined to the region of 
an m-dimensional surface in the 2m-dimensional phase space, given by the same equations 
with a vector interpretation. For example, the invariant ton of EBK quantization have this 
form, and wave packets which are intially confined to a region of phase space of size tim 
are dispersed in time to this extended form by most Hamiltonians, for example, the kinetic 
energy, or by scattering. Thus for closed systems the natural classical analogues of quantum 
states are surfaces which satisfy the timeindependent or time-dependent Hamilton-Jacobi 
equation. 

Now we consider what happens when an isolated system with a WKB wavefunction is 
suddenly exposed to so’ strong an interaction with the environment that the effect of the 
Hamiltonian can thereafter be neglected and the system becomes wide open. Suppose there 
is one freedom and a single selfadjoint diffusion operator L,  and let k be conjugate to t.~ 

Using the state diffusion equation (2.14) and the quasiclassical approximations, the 
change in the probability density is given by 

dD(x) = 2Re(@* a@) + d@* d@ 
= 2Re ( - i ( t ( x )  - (t))’@*@dt + ( t ( x )  - (t))@*@dc) + (Qx) - (t))’@*@dt 

2( t (x )  - ( e ) )D(x )  ‘%R (8.3) 

where suffixes R and I represent real and imaginary parts. 
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To obtain the change in the action, use equations (8.1), (2.14) and (2.15) to give 

dS(x)/T2 = Im(d In @) = Im (d@/@ - &(d@/@)') 
(8.4) 

= O + I m ( ( t  - (e))@) + O  
so that 

dS(x) = h ( t  - (e)) dtl. (8.5) 
The change in the action function produces a corresponding change in the classical limiting 
value of the dynamical variable k conjugate to e given by 

(8.6) 
This diffusion is of order f i  times the diffusion in the xdensily D(x),  and is independent 
of it. In (k, e) representation, the shape and orientation of the phase space curve remain 
constant, but the whole curve diffuses slowly in the k-direction. 

This result generalizes directly to vector dynamical variables e with n components by 
interpreting and k as n-vectors, with n different Wiener processes der corresponding to 
the components e,. 

A more general type of quasiclassical representation is as a sum over sheets s given by 

dk = d(aS/X) = h der. 

W) = = C~,(x)~''exp(iS,(x)/fr) (8.7) 
I 

where the functions 

Y, (x )  = a s w a x  (8.8) 
together describe a continuous Lagrangian m-manifold in the phase space, joined together 
at the classical turning points, which correspond to quantum caustics. In the classical limit 
the distribution is confined to this curve, with an x density defined by the Ds(x). The mean 
of a dynamical variable g is 

(g) = E/ d'"x.D&k,(x) (8.9) 

where g,(x) is the value of g on the sheets at x .  The equation for the change in the density 
& ( x )  is then 

dDs(x) 2(&(x) - ( e ) ) D s ( x )  Gi (8.10) 
giving the coupling between the sheets from the value of (e), which depends on the mean 
over all sheets. 

Let 

Os = dmx D&) (g), = 0;' 1 dmx D,(x)g,(x)  (8.11) I 
be the total density or expectation for sheet s and the expectation of g for sheet s. Then 
from (8.10) 

dD, = /dmxdD,(x) = ZD,((t), - (t))d(R (8.12) 

so the coupling between the sheets changes the relative overall density of the sheets. The 
sheet expectations of those sheets whose expectation of e is close to the overall expectation of 
e, fluctuate little, but when the difference of expectations of e is large the sheet expectations 
fluctuate a lot, and those particular sheets tend to lose density in the ensemble. 

As shown in earlier sections, the asymptotic result of the state diffusion is localization 
to a surface of constant e or to the quantum neighbourhood of a point in phase space. 
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9. Discussion 

Previous papers [I-3,7-101 built up a picture in which interaction with the environment 
produced localization, sometimes to an eigenstate, but more commonly to a state which is 
localized in phase space. Here that picture is confirmed and extended. A general theory is 
presented, lower bounds are put to rates of selflodization, and bounds are put on asymptotic 
states. 

For wide-open systems, localization to regions of phase space comparable in volume to 
hm is the norm, so that for nearly wide-open systems, the limiting behaviour on a classical 
scale is the natural one of motion of points in phase space, satisfying Hamilton's equations, 
rather than WKB surfaces satisfying the Hamilton-Jacobi equation. For general open systems 
there is a physical conflict between the~dispersion due to the Hamiltonian and the localization 
due to the state diffusion. 

Perhaps the most interesting result is that there is a purely classical limit of state diffusion 
in which the state of a single system is represented by a density in phase space, which 
diffuses according to the equation @.lo), in which Planck's constant does not appear. 
The diffusion depends only on the dynamical variables corresponding to the environment 
operators, and their means. Because of  the^ appearance of the mean there are strong non- 
local effects, including localization towards distributions of quantum dimensions that appear 
to classical eyes like phase space points. Localization can be a classical effect. For general 
open systems there is  simultaneous Liouville 'and diffusion evolution of the phase space 
density given by 

doCxpy) = (h ,  o)dt  + Z C ( e j ( x ,  U) - (ej))D(x, Y))d$jR (9.1) 
1 

where h(x, y) is the classical Hamiltonian, D ( x ,  y) is the classical phase space density, 
which may be singular, [. , .} is the Poisson bracket, and dcjR are independent real Wiener 
processes with 

Although this theory is entirely classical, there is little possibility of seeing the effects for 
macroscopic bodies in our era, because there are so many interactions with the environment 
that the localization to a phase point is too fast. It would have happened long ago, 
giving today the ordinary  classical picture of phase points moving according to Hamilton's 
equations. It is conceivable that classical localization of  large bodies may have been 
significant in the very early Universe. However, for some of today's microscopic systems 
there may well be situations in which the localization can be treated classically, provided 
there is no need for detail in phase space on a scale of Planck's constant. 

Acknowledgments 

I should like to thank the Theoretical Physics groups at the Universities of Bremen and of 
New Mexico at Albuquerque for their hospitality whilst parts of this work were in progress, 
and the Alexander van Humboldt foundation for their support for my stay at the University 
of Freiburg. It is also a pleasure to thank Nicolas Gisin for invaluable discussions and other 
communications, and a referee for helpful suggestions. 



1018 Ian C Percival 

Appendix 1. Bounds on QMS deviations 

Let B and C be any two selfadjoint operators, with constant commutator 

[ B ,  Cl = iy # 0 (AM) 

and let c = y2/4. By the Heisenberg inequality, 

u2(B)u2(C) = (AB)'(AC)' > c. (A1.2) 

So for any positive integer n, the sum of the nth powers of the QMS deviations satisfies the 
inequality 

(u2(B))" + (u2(C))" > (u2(B))" + c"/ (uZ(B))". (A1.3) 

The minimum value of the right-hand side is attained when 

(u2(B))n = cn'2 (A1.4) 

so that 

2 ( B )  = u'(C) = [ y [ / Z .  (A1.5) 

This minimum is therefore only achieved by the specific minimum indeterminacy wave 
packet for which the QMS deviations of B and C are equal. In general, for arbitarary states, 
the sum on the left of (A1.3) therefore satisfies the inequality 

(uZ(B))" + (u"(C))" > 2c"'z = Z(lyl/Z)" = 2(I[B, c11/2y. (A1.6) 

The quantum correlations between selfadjoint operators also satisfy the inequalities. From 
the commutation relations 

u(B, C) - u(B, C)" = U @ ,  C) - u(C, B )  = iy (A1.7) 

so 

b ( B ,  C)l = b(C, B)I > y/2. (A1.8) 

If B = GR and C = GI are the real and imaginary parts of a non-selfadjoint operator G, 
then 

[GR, GI] = iy [Gt, GI =~-2y (A1.9) 

and from equation (2.8), 

&G) + Y = u'(GR) + 2 ~ ~ 1 )  

~ ' ( G R )  = u ~ ( G I )  = k I / 2  

is minimized when 

(A1.10) 

(Al . l l )  

and so by the definition (2.12) for the ensemble localization A of a non-selfadjoint operator, 

(A1.12) 

an overall limit on the localization of a non-selfadjoint operator. 
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Appendix 2. Equivalence and linear dependence of environment operators 

Equivalent sets of environment operators are those that result in the same quantum 
state difffusion. Here I show directly that in a finite-dimensional state space, linearly 
dependent finite sets of environment operators are equivalent to a smaller number of linearly 
independent environment operators. As pointed out in [l], a set 

L j  ( j = l ,  ... n )  ('42.1) 

of environment operators for quantum state diffusion is equivalent to any other set 

L; ( k = l ,  ... n) (A2.2) 

related to the first by a unitary bansformation 

(A2.3) 
~. 

L j = . x L & k j  ( j , k =  1, ... n).  
k 

The scalar product of two operators is defined in the usual way as 

( A ,  B )  = Tr(AtB). ('42.4) 

The scalar product then defines Hermitean scalar product matrices 

related by the unitary transformation 

~sjj' U;kSLpUk'j' 
k.k' 

(A2.6) 

where all suffices range from 1 ton. The unitary transformation can be chosen to diagonalize 
the Hermitean scalar product manix sLk, ,  so that all the cross products are zero. 

Now suppose that the number of linearly independent L j  is no < n. Then this will 
also be true of the L;, and the only way this can happen is for n - no of the L; to have 
zero norm, so they are identically zero and have no effect on the diffusion. Thus every 
state diffusion equation in a finite-dimensional state space is equivalent to a state diffusion 
equation with linearly independent environment operators L j .  

In a practical problem with an infinite-dimensional phase space, a finite-dimensional 
subspace is usually an adequate approximation. For example, free particles can be put in a 
large box, with a momentum cutoff. 
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